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Introduction
Statins are highly effective at lowering circulating low-density lipoprotein (LDL) cholesterol and promot-
ing both primary and secondary prevention of  atherosclerotic cardiovascular disease (ASCVD) (1–3). 
While statin therapy is generally well tolerated and considered safe (1), randomized control trials and 
large cohort studies, together with patient registries, report that up to 30% of  patients experience mild to 
moderate muscle weakness, pain, and/or cramps (4–11), often leading to nonadherence and discontinu-
ation of  statin use, thus adversely affecting ASCVD outcomes (12, 13).

The potential mechanism underlying the pathophysiology of  statin intolerance remains unclear. While 
rare, the most severe form of  statin intolerance is characterized by serum creatine kinase increasing to more 
than 10 times the upper normal limit due to release from damaged muscle (i.e., rhabdomyolysis; 2–3 in 
100,000 per year), jeopardizing renal function within days of  initiating statin therapy (14). The response 
typically occurs in patients taking other high-risk medications and/or with other comorbidities (15, 16), 

BACKGROUND. While the benefits of statin therapy on atherosclerotic cardiovascular disease are 
clear, patients often experience mild to moderate skeletal myopathic symptoms, the mechanism for 
which is unknown. This study investigated the potential effect of high-dose atorvastatin therapy on 
skeletal muscle mitochondrial function and whole-body aerobic capacity in humans.

METHODS. Eight overweight (BMI, 31.9 ± 2.0) but otherwise healthy sedentary adults (4 females, 4 
males) were studied before (day 0) and 14, 28, and 56 days after initiating atorvastatin (80 mg/d) 
therapy.

RESULTS. Maximal ADP-stimulated respiration, measured in permeabilized fiber bundles from 
muscle biopsies taken at each time point, declined gradually over the course of atorvastatin 
treatment, resulting in > 30% loss of skeletal muscle mitochondrial oxidative phosphorylation 
capacity by day 56. Indices of in vivo muscle oxidative capacity (via near-infrared spectroscopy) 
decreased by 23% to 45%. In whole muscle homogenates from day 0 biopsies, atorvastatin 
inhibited complex III activity at midmicromolar concentrations, whereas complex IV activity was 
inhibited at low nanomolar concentrations.

CONCLUSION. These findings demonstrate that high-dose atorvastatin treatment elicits a striking 
progressive decline in skeletal muscle mitochondrial respiratory capacity, highlighting the need for 
longer-term dose-response studies in different patient populations to thoroughly define the effect 
of statin therapy on skeletal muscle health.
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implying a preexisting susceptibility to collapse of  muscle cell function. By contrast, the myopathic symp-
toms characteristic of  the more common milder form of  statin intolerance occur with little to no increase 
in creatine kinase (17). The risk of  developing myopathic symptoms increases with age as well as dose and 
duration of  statin therapy (10, 18, 19), suggesting a progressive deterioration in one or more aspects of  
muscle function. Moreover, several studies have provided evidence that, when statins are combined with 
regular exercise, the prevalence and severity of  adverse muscle reactions increase (20–25) and the cardiovas-
cular benefits associated with exercise training may be attenuated (26–28).

Mounting evidence has emerged that mitochondrial function may be a primary target of  statins. In 
vitro exposure of  isolated muscle mitochondria, permeabilized myofibers, and/or cultured myocytes 
to statins has been shown to dose-dependently inhibit the enzymatic activity of  respiratory complexes 
and overall mitochondrial respiratory capacity, and it has been shown to disrupt calcium homeostasis 
(29–34). The effect of  in vivo exposure to statins on muscle respiratory function in humans, however, is 
less clear. In a study of  patients with hypercholesterolemia treated with simvastatin (10–40 mg/d) for at 
least 12 months (average 5 years), maximal ex vivo respiratory capacity measured in permeabilized mus-
cle fiber bundles was significantly lower compared with fibers from well-matched controls (35). However, 
in a subsequent well-controlled study of  healthy patients treated with statins (simvastatin 80 mg/d or 
pravastatin 40 mg/d) for 2 weeks, only a trend for a decrease in muscle mitochondrial respiratory func-
tion was detected (36). Together, these 2 studies suggest the effect of  statins may be relatively slow and 
progressive. To test this possibility, we examined the effect of  high-dose (80 mg/d) atorvastatin therapy 
over 8 weeks on skeletal muscle mitochondrial function and whole-body aerobic capacity in overweight 
but otherwise healthy humans. The findings revealed a striking progressive decrease in mitochondrial 
respiratory capacity in skeletal muscle.

Results
Short-term high-dose statin therapy reduces muscle respiratory capacity and insulin sensitivity. To directly measure 
the potential effect of  high-dose statin therapy on whole body and skeletal muscle aerobic function, 8 
overweight but otherwise healthy sedentary adults (4 male and 4 female) were studied before and 14, 28, 
and 56 days after initiating atorvastatin (80 mg/d) therapy. Participant physical and clinical characteristics 
are presented in Table 1. As expected, statin therapy significantly reduced circulating LDL (47%) and 
total (32%) cholesterol. Creatine kinase, a marker of  muscle damage, tended (P = 0.072) to increase after 
56 days of  atorvastatin treatment to 149.5 ± 90.0 U/L but remained well below the upper normal limit 
(336 U/L) in all patients. Total bilirubin and alkaline phosphatase, 2 markers of  liver damage, increased 
significantly from baseline (Table 1) but also remained well below their respective upper normal limits 
(1.2 mg/mL and 147 U/L). None of  the patients reported myalgia or any other muscle-related symptoms 
throughout the study.

Whole-body maximal aerobic capacity (VO2 max), as assessed by indirect calorimetry during a graded 
treadmill test, was not significantly affected by 8 weeks of  atorvastatin therapy (Figure 1A). Individual 
responses to statin therapy varied, however, with 3 of  8 patients showing no change or a slight increase 
(+1.7 mL/kg/min [+1.1%]) and 5 of  8 showing a decline in VO2 max ranging from –0.9 to –5.5 mL/
kg/min (Supplemental Figure 1; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.174125DS1) or –4.3 to –16.5% (Figure 1B).

Given that previous large cohort studies (37) and metaanalyses (38–40) have provided evidence that 
statin therapy may increase the risk of  developing insulin resistance/diabetes, i.v. glucose tolerance tests 
(IVGTT) were performed at baseline and at the end of  the statin therapy. Six of  the 8 participants displayed a 
reduction in insulin sensitivity after 56 days of  atorvastatin therapy, while 2 participants (both female) unin-
tentionally lost weight (3–5 kg) and exhibited a slight to modest increase in insulin sensitivity (Figure 1C).

To measure aerobic capacity specifically in skeletal muscle in vivo, noninvasive near-infrared spectros-
copy (NIRS) was employed (41–44). Briefly, following a short period of  contraction of  the vastus lateralis 
muscle sufficient to increase muscle oxygen consumption (mVO2) by approximately 7- to 10-fold, the 
recovery kinetics of  mVO2, which is directly related to the overall aerobic capacity of  the tissue, was mea-
sured during a series of  arterial/venous occlusions (Figure 1D). mVO2 kinetics during recovery decreased 
after 56 days of  atorvastatin treatment, as evidenced by an approximately 23% decrease in the rate con-
stant (k) and an approximately 45% increase in the time constant (τ = 1/k) for ΔmVO2 (Figure 1, E and F), 
both of  which indicate a decrease in muscle oxidative capacity.
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Short-term high-dose statin therapy reduces skeletal muscle mitochondrial respiratory function. To directly 
assess the potential effect of  statin therapy on skeletal muscle mitochondrial function, biopsies of  the 
vastus lateralis muscle were taken prior to and 14, 28, and 56 days after initiating atorvastatin therapy. 
Permeabilized fiber bundles were prepared to measure mitochondrial respiratory kinetics and capacity 
using 3 different respiration protocols; in response to titration of  ADP in the presence of  saturating 
concentrations of  complex I substrates (glutamate + malate; Figure 2A), in response to titration of  
glutamate in the presence of  2 mM malate and 4 mM ADP (Figure 2B), or in response to titration of  
the complex II substrate succinate in the presence of  rotenone (complex I inhibitor to block reverse 
electron flow) and 4 mM ADP (Figure 2C). The first protocol tests the capacity/limitations of  the entire 
oxidative phosphorylation (OxPhos) system, while the next 2 protocols provide insight regarding poten-
tial changes in the capacity/limitations at complex I or complex II of  the electron transport system 
(ETS), respectively. All 3 protocols revealed a similar outcome — a progressive decline in the maximal 
ADP-stimulated rate of  oxygen consumption (JO2) over the 56 days of  atorvastatin treatment, resulting 
in a 30%–38% decrease in skeletal muscle mitochondrial OxPhos capacity (Figure 2, D–F). The appar-
ent Km (i.e., the concentration of  ADP or substrate eliciting 50% of  maximal oxygen consumption; 
Figure 2, A–C) was unaffected in all protocols, indicating similar sensitivities of  the OxPhos system to 
ADP and substrates. Addition of  the mitochondrial uncoupler FCCP at the end of  each titration proto-
col did not restore JO2 to prestatin treatment levels (i.e., day 0, not shown), indicating the statin-induced 
decrease in OxPhos capacity was not due to inhibition of  ATP synthase. JO2 was also not restored by 
addition of  cytochrome c (Figure 2, A–C), confirming that the integrity of  the outer mitochondrial 
membrane remained intact with statin treatment. Moreover, neither citrate synthase activity (Figure 
2G) nor expression of  the ETS protein complexes (Supplemental Figure 2) were affected by statin thera-
py, indicating a decrease in mitochondrial content did not account for the decrease in OxPhos capacity. 
Atorvastatin therapy did not affect the mitochondrial H2O2 emitting potential except during respiration 
supported by succinate where it was decreased (Figure 2, H and I). Finally, statin treatment induced a 
decrease in mitochondrial calcium retention capacity (Figure 2J), indicative of  an increase in sensitivity 
of  the mitochondrial permeability transition pore to calcium overload.

Acute in vitro exposure to statins decreases mitochondrial respiratory function. To determine if  atorvas-
tatin directly affects skeletal muscle mitochondrial function, muscle biopsies were obtained after an 
overnight fast from a separate group of  overweight but healthy female patients (ages 30–39, mean BMI 
= 33.8 kg/m2, good liver function, no statin history; Supplemental Figure 3A). Permeabilized fiber 
bundles were exposed to either vehicle or atorvastatin (10 μM) for 10 minutes prior to and throughout 
the respirometry protocol. Similar to atorvastatin treatment in vivo, exposure to atorvastatin in vitro 

Table 1. Patient physical and clinical characteristics before and after treatment.

Characteristic Before After P value
Age (y) 36.2 (9.4)
Height (m) 1.74 (0.07)
Weight (kg) 97.5 (11.9) 97.9 (13.2) 0.766
BMI (kg/m2) 31.9 (2.0) 32.0 (2.9) 0.789
Male/female 4/4 4/4
Fasting blood panel

Glucose (mg/dL) 96.4 (11.9) 96.7 (13.7) 0.931
Insulin (μIU/mL) 16.4 (9.4) 12.7 (4.9) 0.203
Total cholesterol (mg/dL) 181.9 (77.7) 122.8 (44.2) 0.002
HDL cholesterol (mg/dL) 45.4 (7.4) 43.1 (11.1) 0.529
LDL cholesterol (mg/dL) 120.0 (72.9) 64.4 (42.0) 0.001
Creatine kinase (U/L) 88.0 (38.7) 149.5 (90.0) 0.072
Albumin (g/dL) 4.38 (0.27) 4.13 (0.17) 0.051
Total bilirubin (g/dL) 0.425 (0.269) 0.675 (0.423) 0.009
Alkaline phosphatase (g/dL) 55.0 (13.3) 61.7 (14.1) 0.001
AST (g/dL) 17.0 (3.7) 26.1 (20.8) 0.284
ALT (g/dL) 18.1 (9.0) 39.7 (41.6) 0.227
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reduced ADP-stimulated JO2 during titration of  either complex I (Supplemental Figure 3B) or complex 
II (Supplemental Figure 3C) substrates.

Mitochondrial complex IV is extremely sensitive to atorvastatin-induced inhibition. To explore the potential 
mechanisms by which atorvastatin inhibits mitochondrial function, steady-state maximal activity assays 
were performed for each of  the 4 enzyme complexes in the ETS in the presence of  increasing atorvastatin 
concentration using whole-muscle homogenates prepared from frozen portions of  each patient’s baseline 
(i.e., day 0) muscle biopsy. Relative to vehicle, atorvastatin up to millimolar concentrations did not alter the 
specific activities of  complex I (Figure 3, A and B) or complex II (Figure 3, C and D) of  the ETS. Complex 
III activity was dose-dependently inhibited by atorvastatin, reaching approximately 70% inhibition relative 
to vehicle in the presence of  1.5 mM atorvastatin (Figure 3, E and F). Strikingly, atorvastatin inhibited 
complex IV activity at low nanomolar concentrations (~50% inhibition at 10 nM; Figure 3, G and H), 
reflecting a high sensitivity of  complex IV to atorvastatin-induced inhibition.

To determine the extent to which atorvastatin accumulates in muscle in vivo, liquid chromatography 
with tandem mass spectrometry (LC-MS/MS) analysis was performed on muscle samples across all time 
points. Unfortunately, the tissue remaining for most of  the samples was insufficient for analysis. Of  the small 
subset of  samples with sufficient tissue remaining (2 × 14 d, 1 × 28 d, 2 × 56 d), quantification of  atorvasta-
tin ranged from 2 to 23 ng per gram of  muscle. Assuming a water content in muscle of  approximately 0.75 
mL/g and an even distribution within that volume, muscle atorvastatin concentration ranged from approxi-
mately 5 to 39 nM, well within the concentration required to inhibit complex IV activity. Surprisingly, even 
in this small number of  samples, the statin-induced decrease in maximal mitochondrial ADP–stimulated 
JO2 correlated strongly with atorvastatin concentration (R2 = 0.9034) (Supplemental Figure 4).

Discussion
The prevention of  ASCVD remains a critical pillar of  global medicine. Statins have been widely advocated 
by clinicians since early reports of  their efficacy for the prevention of  ASCVD (45–48). However, statins 
are not without risk; the most common side effect is some level of  statin-induced myopathy (22, 31, 49–55). 
While the reported incidence of  severe myopathy is relatively low, mild symptoms such as fatigue, muscle 
weakness, and tiredness are common. The goal of  this study was to elucidate the potential mechanisms by 
which statins may induce muscle weakness/fatigue by using a combination of  in vivo, in situ, and in vitro 

Figure 1. Short-term statin therapy decreases 
skeletal muscle mitochondrial function in 
vivo and aerobic capacity. (A) Whole-body 
aerobic capacity (VO2 max) before and after 56 
days of statin therapy. (B) Relative individual 
changes (%) in VO2 max after statin therapy. 
(C) Insulin sensitivity measured by IVGTT. 
(D) Postexercise recovery kinetics of mus-
cle oxygen consumption measured by near 
infrared spectroscopy (mVO2) before (pre) and 
after (post) 56 days of statin therapy. (E and 
F) Following a single exponential fitting, the 
calculated rate constants (directly related to 
mitochondrial capacity) (E) and time constants 
(inversely related to mitochondrial capacity) (F) 
are shown. Data are mean ± SEM (n = 8 for all 
panels). Data analyzed by paired t tests. *P < 
0.05 was considered significant.
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experimental approaches to assess whole-body aerobic capacity, skeletal muscle oxidative capacity, and mito-
chondrial respiratory capacity in skeletal muscle. Only high-intensity statin therapy was studied because it is 
most effective at lowering disease risk (56–58) and, in North America and other regions, is recommended for 
patients with a history of, or a high risk for, ASCVD (1, 59, 60). Within only 8 weeks of  initiating 80 mg/d of  
atorvastatin, we report 2 main findings: (a) in skeletal muscle, postexercise recovery kinetics of  mVO2 in vivo, 

Figure 2. Short-term statin therapy progressively decreases skeletal muscle mitochondrial respiratory capacity. Permeabilized myofibers were prepared 
from skeletal muscle biopsies of the vastus lateralis,and mitochondrial function was measured by high-resolution respirometry prior to and after days 14, 
28, and 56 of high-dose (80 mg/d) atorvastatin therapy. (A) ADP titration in the presence of 5 mM glutamate and 2 mM malate. (B) Glutamate titration 
in the presence of 2 mM malate and 4 mM ADP. (C) Succinate titration in the presence of 4 mM ADP and 10 μM rotenone. All protocols ended with a final 
addition of cytochrome c (+C) to check for mitochondrial integrity. (D–F) Maximal ADP-stimulated respiration from corresponding graphs in A–C. (G) Citrate 
synthase activity measured in whole muscle homogenates as an index of mitochondrial content. (H) Representative trace of mitochondrial H2O2 emission 
from permeabilized fiber bundles in response to sequential additions of 2 mM glutamate + 1 mM malate, 25 μM palmitoyl–L-carnitine, 10 mM succinate, 
and 10 mM glycerol-3-phosphate. (I) Mitochondrial H2O2 emitting rates (JH2O2) calculated from H. (J) Mitochondrial calcium retention capacity measured in 
permeabilized myofibers using fluorophore Calcium Green in the presence of 10 mM glutamate, 2 mM malate, and 0.2 mM ADP. Respiration was clamped 
with 5 mM 2-deoxyglucose and 2 U/mL hexokinase. Data are presented as mean ± SEM (n = 6–8 in A and B; n = 8 in C–F, G, and I; n = 7–8 in J). Data ana-
lyzed by repeated-measures 1-way ANOVA or mixed-effects analysis with Dunnett’s multiple-comparison test. *P < 0.05 was considered significant.
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as well as mitochondrial respiratory capacity in situ, were reduced by approximately 25% and approximately 
30%–38%, respectively, and (b) at the level of  individual respiratory chain complexes, direct in vitro exposure 
to micromolar concentrations of  atorvastatin (i.e., 100 μM) inhibited complex III (<25%), whereas low nano-
molar concentrations of  atorvastatin (i.e., 10 nM) were sufficient to inhibit complex IV by > 50%.

The magnitude at which mitochondrial respiratory capacity in skeletal muscle decreased in response 
to 8 weeks of  high-intensity atorvastatin treatment was striking. In cross-sectional studies, lower muscle 
mitochondrial respiratory capacity has been reported in statin-treated patients relative to matched con-
trols (25, 35, 61). The reported effect was less than in the present study, but cross-sectional studies typical-
ly include many patients taking different types of  statins over a wide range of  doses and durations. In the 
only other study to directly examine the potential effect of  statin treatment on mitochondrial respiratory 
capacity in muscle biopsy tissue, Asping and coworkers (36) found no difference in mitochondrial func-
tion in statin-naive patients after 2 weeks of  high-dose statin treatment (simvastatin 80 mg/d or atorvas-
tatin 40 mg/d). In the present study, muscle mitochondrial respiratory capacity was not reduced 2 weeks 
after initiating atorvastatin treatment but then did reach statistical significance at the 4- and 8-week marks. 
Decreased muscle oxidative capacity (12%), as assessed by 31P magnetic resonance imaging, has also been 
reported in patients after 4 weeks of  atorvastatin therapy (80 mg/d) (62), in line with the approximately 
25% reduction in in vivo muscle oxidative capacity measured by NIRS in the present study after 8 weeks 
of  atorvastatin therapy. Collectively, these studies provide evidence that high-intensity statin therapy pro-
gressively decreases muscle respiratory capacity.

The potential effect of  statins on aerobic capacity at the whole-body level is less clear. In the present 
study, average VO2 max was not significantly different after 8 weeks of  statin therapy. However, 5 of  8 
patients showed an appreciable decline (–4.3% to –16.5 %), whereas 3 showed virtually no change (Fig-
ure 1B). A prior open-label trial also found no change in VO2 max in 10 hyperlipidemic patients after 12 
weeks of  simvastatin (80 mg/d) treatment (63). Aerobic capacity in relation to statin treatment has also been 
assessed in 2 cross-sectional studies. In the LIFESTAT study, no difference in aerobic capacity was found 
between age (40–70 years) and BMI–matched controls (n = 20) and patients (n = 64) on statin therapy (min-
imum 40 mg/d simvastatin) for at least 3 months. However, in a much larger cohort study of  3,500 patients, 
statin usage was associated with significantly lower VO2 peak in males but not females (64). The gradual 
loss of  aerobic capacity with aging is widely regarded as the single strongest predictor of  all-cause mortality 

Figure 3. Acute statin exposure inhibits the activity of mitochondrial complex IV at low nanomolar concentrations in human skeletal muscle. Specific 
activities of mitochondrial ETS complexes were assessed spectrophotometrically from skeletal muscle lysates obtained from human participants in the 
presence of varying concentrations of atorvastatin. (A, C, E, and G) Representative traces. (B, D, F, and H) Quantification of complex I–IV specific activities, 
expressed as percent relative to DMSO treatment. Data are presented as mean ± SEM (n = 6 in A–F; n = 4–6 in G and H). Data analyzed by 1-way ANOVA 
with Sidak’s multiple-comparison test. *P < 0.05, **P < 0.01.
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(65–68). Collectively, these findings suggest that additional larger-scale trials are needed to determine if  
statins adversely affect whole-body aerobic capacity.

Regular physical activity helps to preserve mitochondrial function and aerobic capacity, decreasing 
mortality risk and improving quality of  life (69–74). For patients with ASCVD, mortality risk reduction is 
best achieved when statin therapy is combined with regular physical activity (75). However, physical activ-
ity has been reported to exacerbate statin-induced myalgia (20), particularly with higher-intensity exercise 
(23, 24) and/or in patients who are already symptomatic (25), although it is important to note that other 
studies have not found a relationship between exercise and statin-induced myalgia (76, 77). Previous stud-
ies have also found that statins interfere with the normal adaptive responses to aerobic exercise training by 
attenuating exercise training-induced increases in skeletal muscle mitochondrial content and overall cardio-
respiratory fitness (26–28). However, 2 other studies have failed to confirm these findings, instead providing 
evidence that statins do not inhibit the adaptive responses to exercise training (62, 78). These discrepant 
outcomes have been discussed in recent reviews and are likely due to differences in dose and type of  statin, 
the duration of  therapy, and the order/duration in which statin therapy and/or exercise were initiated (i.e., 
concurrently versus one preceding the other) (79, 80). In addition, genetic polymorphisms influence statin 
catabolism and, thus, circulating statin levels and skeletal muscle exposure (81). The potential influence 
of  genetic polymorphisms has not been examined in relation to skeletal muscle mitochondrial content/
function or aerobic capacity during statin therapy, nor the interplay between statins and exercise. Thus, how 
statin dose, type, duration, exercise training, age, polymorphisms, and fitness level interact to affect ASC-
VD risk reduction, mitochondrial function, aerobic capacity, myalgia, and overall mortality remains to be 
thoroughly defined. The present findings do, however, point to the potential for progressive deterioration of  
skeletal muscle mitochondrial function with high-intensity statin therapy, even in relatively young healthy 
but overweight individuals, thus emphasizing the importance of  carefully assessing the risk-to-benefit ratio 
over time for patients initiating statin therapy. Provided myalgia is not exacerbated, it is also possible that 
implementing a regular exercise program with high-dose statin therapy may benefit patients by at least 
partially counteracting statin-induced decreases in mitochondrial function.

Several mechanisms associated with mitochondrial function are thought to contribute to the develop-
ment of  statin-induced myopathy, including altered calcium homeostasis (32, 82), decreased ubiquinone 
content (Coenzyme Q10) (83) and respiratory function (29–31, 34, 82), reduced mitochondrial DNA con-
tent (84), and induced muscle atrophy (85). A recent report has also provided evidence that the lactone 
form of  several different statins (100 μM) directly inhibits complex III, with no effect on complex IV, in 
mitochondria from C2C12 myoblasts (31). This same study also reported decreased complex III (~15%), 
but not complex IV, activity in a cross-sectional comparison of  muscle biopsies from control patients and 
patients with statin-induced myopathies (31). In the present study, direct exposure of  mitochondrial extracts 
from human skeletal muscle to atorvastatin, beginning at 100 μM, also inhibited complex III activity. How-
ever, complex IV activity was inhibited by > 50% at low nM concentrations of  atorvastatin (i.e., 1 × 104 
lower than that required to inhibit complex III). What accounts for the discrepancy between the 2 studies 
is unclear but may reflect differences in model systems (i.e., C2C12 myoblasts versus human mitochondrial 
extracts; ref. 86) and/or human study design (i.e., cross-sectional versus repeated measures). Complex 
IV activity has been reported to be lower in skeletal muscle mitochondria of  long-term statin users that 
are symptomatic of  statin-induced myopathy relative to nonstatin users (25). Although more research is 
needed, the finding that complex IV was inhibited in vitro at atorvastatin concentrations present in skeletal 
muscle of  patients in vivo (i.e., low nM) (Figure 3H and Supplemental Figure 4) provides another plausible 
mechanism by which atorvastatin may decrease skeletal muscle mitochondrial respiratory capacity.

There are several limitations to the study. This was not a randomized clinical trial with a control group 
but rather a small study using a repeated measures design. To minimize potential confounding factors, 
patient recruitment was deliberately restricted to sedentary and modestly overweight but otherwise relative-
ly young and healthy individuals. The study did not include patients with health indications that typically 
prompt statin prescription, including hyperlipidemia and ASCVD; therefore, it is not known whether such 
patients will experience similar loss of  skeletal muscle mitochondrial function. Only 1 type of  statin was 
tested, and it is not known whether other types, particularly lipid soluble versus nonlipid soluble, will elicit 
similar outcomes. Muscle strength was not formally assessed; thus, its potential relationship to the reduc-
tion in mitochondrial respiration could not be determined. The correlation between muscle atorvastatin 
concentration and change in maximal mitochondrial ADP–stimulated oxygen consumption (Supplemental 
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Figure 4) should be interpreted with caution, given the limited number of  samples available. Finally, only 
1 dose of  atorvastatin was tested, and it remains to be determined how the interplay between statin dose, 
therapy duration, and patient age/health status/activity level may affect the susceptibility of  skeletal mus-
cle to loss of  mitochondrial function.

In summary, the present findings provide evidence that high-dose atorvastatin therapy elicits a progres-
sive and marked decline in skeletal muscle mitochondrial functional capacity in humans, and that direct 
inhibition of  mitochondrial complex IV may be a primary mechanism of  action. Reduced skeletal muscle 
mitochondrial function may contribute to a decrease in whole-body aerobic capacity, although more data 
are needed to test this hypothesis in the context of  statin therapy. The findings highlight the need for lon-
ger-term, large cohort studies to further define the potential interactions between statin type/dose/duration 
and patient health status on skeletal muscle mitochondrial function and overall aerobic capacity.

Methods
Sex as a biological variable. Both male and female patients participated in this study, and similar findings are 
reported for both sexes. Other than where noted, no sex differences were detected and, as such, all data 
were combined.

Reagents. Unless otherwise noted, all chemicals were purchased from Sigma-Aldrich and of  the highest 
purity available.

Participants. Eight overweight sedentary adults (4 male, 4 female) were recruited to participate in the 
study. Aside from elevated BMI, participants were otherwise healthy, nonsmokers, and not taking any 
medications known to alter metabolism. Physical activity was quantified via the International Physical 
Activity Questionnaire (IPAQ) at baseline (87). All patients were classified as inactive or minimally active 
and instructed to maintain their normal activity levels during the 8-week study. All female participants were 
enrolled for baseline testing on the first day of  their menstrual cycle. Clinical and physical characteristics 
are provided in Table 1.

Study design. Participants completed baseline testing prior to initiating the study; this included deter-
mination of  whole-body VO2 max, in vivo muscle oxidative capacity via NIRS, and IVGTT following an 
overnight fast. Following at least 2 days of  rest, participants again reported after an overnight fast and a per-
cutaneous biopsy was obtained from the vastus lateralis muscle. Participants then began the atorvastatin (80 
mg/day) treatment for 56 consecutive days with instructions to take the pills in the morning upon waking 
and to maintain their normal diet and activity levels for the duration of  the study. Additional muscle biopsies 
were obtained on the mornings of  days 14, 28, and 56. Participants were asked at each visit, and instructed 
to report at any time, whether they experienced any muscle-related symptoms (e.g., pain, weakness, discom-
fort) apart from the biopsies. An IVGTT was repeated on day 56 after the muscle biopsy. NIRS and VO2 
max tests were repeated within 5–7 days after the final biopsy, with patients remaining on the statin regimen.

VO2 max. Peak oxygen consumption rate was determined by indirect calorimetry (Parvo Medics’ True-
One 2400 metabolic cart) on a motor driven treadmill (Cardiac Science) using a modified Bruce treadmill 
protocol. After an initial 3-minute warm-up at 2.0 mph and 0% grade, treadmill velocity was increased to 
3.0 mph. Thereafter, the grade was increased by 2% every 2 minutes until volitional fatigue. At least 2 of  
the following criteria were used to validate achieving VO2 max; evidence of  plateau in VO2 (<50% of  slope 
of  submaximal work rate × VO2), respiratory exchange ratio ≥ 1.05, heart rate ≥ 95% of  the age-predicted 
maximum (220 – age), and/or 2 minutes posttest blood lactate > 6.0 nmol/L. The breakdown of  criteria 
outcomes for each patient’s pre- and posttraining VO2 test is provided in the Supplemental Data Values file.

In vivo assessment of  mitochondrial function via NIRS. Skeletal muscle mitochondrial respiratory capacity was 
assessed in vivo using NIRS as previously described (41). NIRS data were acquired using a frequency-domain 
device (OxiplexTS, ISS) equipped with 8 infrared diode lasers (4 emitting at 691 nm and 4 at 830 nm) and a 
detector. In the current study, we employed a single-channel (i.e., probe) setup with emitter-detector distances 
of  2.5, 3.0, 3.5, and 4.0 cm. Data were collected at 4 Hz. The NIRS probe was positioned longitudinally on 
the belly of  the vastus lateralis muscle of  the right leg approximately 10 cm above the patella and secured with 
double-sided adhesive tape and Velcro straps around the thigh. The NIRS device was calibrated prior to each 
test using a phantom with known optical properties after a warm-up period of  at least 30 minutes. A blood 
pressure cuff  (Hokanson SC-10D or SC-10L) was placed proximal to the NIRS probe as high as anatomically 
possible on the thigh. The blood pressure cuff  was controlled with a rapid-inflation system (Hokanson E20, 
D.E. Hokanson Inc.) set to a pressure of  > 250 mmHg and powered with a 15-gallon air compressor (Model 
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D55168, Dewalt). Skin and adipose tissue thickness was measured at the site of  the NIRS probe using skin-
fold calipers (Lange). Participants performed a short-duration (~10–20 seconds) isometric contraction of  the 
quadriceps muscle group to increase mVO2. Upon relaxation, the recovery kinetics of  mVO2 were measured 
using a series of  transient arterial occlusions, and data were fitted to a single exponential function, where end 
is the mVO2 immediately following exercise, delta is the change in mVO2 from rest to end-exercise, k is the rate 
constant, and τ is the time constant (1/k). The rate constant was used as an index of  mitochondrial respiratory 
capacity as previously described (44). The exercise and occlusion procedure was performed twice, and the 
results were averaged. NIRS data were analyzed using custom-written routines in Matlab (Mathworks).

Fasting blood draw and IVGTT. Upon arrival after an overnight fast, participants rested in bed for 20 
minutes. A catheter was placed in the antecubital vein, and a baseline blood draw was obtained for routine 
laboratory testing of  metabolic and liver function panels. Immediately following baseline blood sampling, 
an IVGTT was performed as previously described (88).

Skeletal muscle biopsies. Percutaneous muscle biopsy samples were collected from the vastus lateralis mus-
cle. After cleansing the skin with a povidone-iodine swab (or chlorhexidine gluconate for patients allergic to 
iodine/shellfish), the biopsy sight was then anesthetized with 5 cc of lidocaine. A small incision was made with 
a scalpel, and the muscle biopsy sample was aspirated through a 5 mm Bergström needle. Part of the muscle 
biopsy sample was immediately flash frozen in liquid nitrogen and stored at –80°C until subsequent analysis. 
Remaining portions of the muscle biopsy were used for mitochondrial function assessment (~10–20 mg).

Preparation of  permeabilized fiber bundles. Approximately 100–150 mg of  skeletal muscle was obtained 
from the vastus lateralis muscle by percutaneous muscle biopsy under local anesthetic (1% lidocane). A 
portion of  each muscle sample was immediately placed in ice-cold buffer X (50 mM K-MES, 7.23 mM 
K2EGTA, 2.77 mM CaK2EGTA, 20 mM imidazole, 20 mM taurine, 5.7 mM ATP, 14.3 mM phospho-
creatine, and 6.56 mM MgCl2-6H2O [pH 7.1]) for preparation of  permeabilized fiber bundles as previous-
ly described (89). Fiber bundles were separated along their longitudinal axis using needle-tipped forceps 
under magnification (MX6 Stereoscope, Leica Microsystems), permeabilized with saponin (30 μg/mL) 
for 30 minutes at 4°C, and subsequently washed in cold buffer Z (105 mM K-MES, 30 mM KCl, 1 mM 
EGTA, 10 mM K2HPO4, 5 mM MgCl2-6H2O, 0.5 mg/mL BSA [pH 7.1]) for approximately 20 minutes 
until analysis. At the conclusion of  each experiment, permeabilized fiber bundles (PmFBs) were washed in 
double-distilled H2O to remove salts, freeze-dried (Labconco), and weighed for data normalization. Typical 
fiber bundle sizes were 0.2–0.6 mg dry weight.

Mitochondrial respiration. High-resolution O2 consumption was measured in permeabilized fiber bundles 
in 2 mL of  buffer Z containing 20 mM creatine and 25 μM blebbistatin to inhibit contraction (89) using 
the OROBOROS Oxygraph-2k (Oroboros Instruments). Polarographic O2 measurements were acquired at 
2-second intervals with the steady state rate of  respiration calculated from a minimum of  40 data points 
and expressed as pmol/sec/mg dry weight. All respiration measurements were conducted at 37°C and a 
working range [O2] of  approximately 350–200 μM.

Mitochondrial H2O2 emission. Mitochondrial H2O2 emission rate was measured fluorometrically at 37°C 
via the Amplex Ultra Red (10 μM)/horseradish peroxidase (HRP: 3 U/mL) detection system (excitation/
emission [Ex:Em], 565:600) in response to sequential additions of  2 mM glutamate + 1 mM malate, 25 μM 
palmitoyl–L-carnitine, 10 mM succinate, and 10 mM glycerol-3-phosphate (90).

Mitochondrial calcium retention capacity. To determine susceptibility to opening of  the mitochondrial per-
meability transition pore, permeabilized fiber bundles were exposed to progressively increasing calcium 
load in the presence of  (in mM): 5 malate, 10 glutamate, and 0.02 ADP. Changes in extramitochondrial 
calcium concentration were monitored fluorometrically using Calcium Green (1 μM; Ex:EM, 506:532 nm; 
Invitrogen) per the manufacturer’s instructions. All experiments were run at 37°C in Buffer Z containing 2 
U/mL hexokinase and 5 mM 2-deoxyglucose to clamp respiration.

Specific activity of  mitochondrial OxPhos complexes. Frozen portions from muscle biopsies were homogenized 
in 0.3M sucrose, 10 mM HEPES, and 1 mM EGTA on ice (adapted from ref. 91), and total protein concen-
tration was determined using the BCA protein assay kit (Invitrogen). Citrate synthase activity was measured 
using a standard assay kit (MilliporeSigma, CS0720). Specific activities of  each individual ETS complex were 
determined spectrophotometrically as previously described (92). Briefly, aliquots of  skeletal muscle lysates 
were diluted in hypotonic medium (25 mM K2HPO4, 5.3 mM MgCl2 [pH 7.2]) and further subjected to 3–4 
freeze-thaw cycles. Complex I activity was determined in 5 mM Tris, 0.5 mg/mL BSA, 24 μM KCN, 0.4 μM 
antimycin A (pH 8), following the oxidation of  NADH (0.8 mM) at 340 nm (ε340 = 6,220/M/cm) for 3 min-
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utes using oxidized decyl-ubiquinone (DCUox; 50 μM) as the electron acceptor. Rotenone (4 μM) was added 
to measure rotenone-sensitive NADH-DCU oxidoreductase activity. Complex II activity was measured in 
10 mM KH2PO4, 2 mM EDTA, and 1 mg/mL BSA in the presence of  10 mM succinate (SQR medium), 
following the reduction of  dichlorophenolindophenol (80 μM) at 600 nm (ε340 = 19,100/M/cm) for 3 minutes, 
using DCUox as the electron acceptor. The reaction was inhibited by the addition of  the competitive substrate 
malonate (10 mM). Complex III activity was measured in SQR medium supplemented with 200 μM ATP 
and 240 μM KCN, using DCUred (80 mM) as an electron donor and oxidized cytochrome c as acceptor (40 
μM). The reaction was followed by measuring the reduction of  cytochrome c at 550 nm (ε340 = 18500/M/
cm) for 3 minutes and was then inhibited by the addition of  0.5 μM myxothiazol. Complex IV activity was 
measured in 10 mM KH2PO4 (pH 6.5), 0.25 M sucrose, 1 mg/mL BSA, and 10 μM of reduced cytochrome c. 
Lauryl maltoside (2.5 mM) was added to permeabilize the external mitochondrial membrane, and the rate of  
cytochrome c oxidation was followed measuring the decrease in absorbance at 550 nm.

Immunoblotting. Frozen skeletal muscle samples from the biopsies were homogenized in radioimmu-
noprecipitation buffer supplemented with protease inhibitors (Roche). Immunoblotting for the mitochon-
drial OxPhos complexes was performed using the total OxPhos antibody cocktail (Abcam, ab110411) at 
1:1,000. Bands were quantified by densitometry using ImageJ (NIH), and relative intensities were normal-
ized to GAPDH (Abcam, ab110413) at 1:1,000.

Measurement of  atorvastatin by LC-MS/MS. Frozen skeletal muscle samples obtained from the biopsies 
were lysed using a Tissuelyser (3 × 20 cycles/sec for 2 minutes) in 1 mL of  90:10 acetonitrile/water with 
0.1% formic acid. Samples were then centrifuged for 10 minutes at 15,000g at 4°C. The pellet was resuspend-
ed in homogenization buffer, spiked with an internal standard mix of  atorvastatin, and evaporated to dry-
ness under nitrogen gas. Samples were resuspended in 65:35 acetonitrile/water for injection in LC-MS/MS.

Statistics. Data are presented as mean ± SEM unless otherwise specified. Analyses performed included 
repeated-measures 1-way ANOVA or mixed-effects analysis (in the case of  1 or more missing values) with 
Dunnett’s multiple-comparison test, ordinary 1-way ANOVA with Sidak’s multiple-comparison test, and 
2-tailed paired t tests. Statistical analyses were performed with GraphPad Prism (GraphPad Software). 
Statistical significance was accepted when P < 0.05.

Study approval. All procedures were approved by the IRB for patients at East Carolina University and 
carried out in accordance with the Declaration of  Helsinki. All participants gave written informed consent 
prior to enrollment. Patients participating in the study were recruited prior to release of  the NIH Policy 
on the Dissemination of  NIH-Funded Clinical Trial Information. Therefore, the study is not registered 
through ClinicalTrials.gov.

Data availability. All supporting raw data and statistical analyses are provided in the Supporting Data 
Values file.
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